
so
ftw
ar
e

engineering

so
ftw
ar
e

engineering

Causality Checking  
for Complex System Models"

"
Florian Leitner-Fischer"

"
University of Konstanz"

Department of Computer and Information Science"
Chair for Software Engineering"

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Joint work with"

2!

Stefan Leue

Chair for Software Engineering!
Department of Computer and Information Science!

University of Konstanz!
Germany!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Analysis of Complex Systems"
♦  A Railroad Crossing"

3!

Train!

Car!

Gate!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Model Checking"
!

M |= S!

model of the software!
(transition system, 
Kripke structure)!

model checking  
algorithm 

!

requirement specification!
(assertions, temporal  

logic, automata)!

Train !

Approaching! On Crossing!

Left Crossing!

Gate !
Open!

Closed!

Car !

Approaching! On Crossing!

Left Crossing!

there is never a train in the !
crossing at the same time !
when there is a car in the  

crossing!
ϕ = ☐¬(Tc ÆCc)!

state space search
(depth-first or
breadth-first search)!

4!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Model Checking"
♦  Explicit State Model Checking"

8 most common: automatic search of all reachable system states to
find property violations using depth-first search (DFS) or breadth-first
search (BFS)!

8 the path into a property violating state is called an error path or
counterexample!

5!

Ca!

Ta!

Cc!

Gc!

Tc!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

♦  Railroad Crossing Example: "
8 11 error-paths (only considering shortest paths)!

Interpreting Counterexamples"

6

[Ta, Gf, Tc, Ca, Cc]!
[Ca, Ta, Gf, Tc, Cc]!
[Ta, Gf, Ca, Cc, Tc]!
[Ta, Ca, Gf, Cc, Tc]!
[Ca, Ta, Gf, Cc, Tc]!
[Ta, Ca, Cc, Gf, Tc]!
[Ca, Ta, Cc, Gf, Tc]!
[Ca, Cc, Ta, Gf, Tc]!
[Ta, Ca, Cc, Gc, Tc]!
[Ca, Ta, Cc, Gc, Tc]!
[Ca, Cc, Ta, Gc, Tc]!
... !

•  all lead into a property violating state
(accident)!

•  for debugging!
•  what is the cause?"

•  manual analysis!
•  tedious!
•  error prone!
•  essentially impossible!

•  our goal:!
•  algorithmic causality

computation"

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Outline"
♦  Models of Causation"

♦  An Adopted Structural Equation Model"

♦  Causality Checking"

♦  Experimental Evaluation "

♦  Conclusion "

7!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Outline"
♦  Models of Causation"

♦  An Adopted Structural Equation Model"

♦  Causality Checking"

♦  Experimental Evaluation "

♦  Conclusion "

8!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Causality"
♦  (Naive) Lewis Counterfactual Reasoning"

!c is causal for e (effect / hazard) if, had c not happened, then e would
not have happened either!

8 logical foundation of some software debugging techniques, e.g.,!
–  delta debugging!
–  nearest neighbor techniques!

8 best suited for single cause failures!

9!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Consequences"
♦  Need for Alternate Worlds"

8 what-if analysis!
–  had there been another course of action (= "world") in which the

gate had been closed before the car entered the crossing, there
would not have been an accident (= a "good" world)!

8 "good" world: the effect does not occur!
8 "bad" world: the effect occurs!

♦  Limitations"
8 not suited for effects that have logically complex causal structure!
8 We use an adaption of the Structural Equation Model by Halpern

and Pearl!
–  SEM is based on Lewis counterfactional reasoning!

10

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Halpern / Pearl Structural Equation Model (SEM)"
♦  Key Ideas"

8 events are represented by boolean variables!
–  specified using structural equations!

8 computes minimal boolean disjunction and conjunction of causal
events !

8 causal dependency of events represented by causal networks!
8 reference!

11!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Halpern / Pearl Structural Equation Model (SEM)"
♦  Actual Causality Conditions"

8 AC1: ensures that there exists a world where the boolean
combination of causal events c and the effect e occur!

8 AC2:!
1.  if at least one of the causal events does not happen, the effect e

does not happen!
2.  if the causal events occur, the occurrence of other events can

not prevent the effect !
8 AC3: no subset of the causal events satisfies AC1 and AC2

(minimality)!

12!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Outline"
♦  Models of Causation"

♦  An Adopted Structural Equation Model"

♦  Causality Checking"

♦  Experimental Evaluation "

♦  Conclusion "

13!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

An Adopted Structural Equation Model"
♦  Main Goals "

8 Consider event order as causal factor!
8 Make Structural Equation Model applicable to transition systems!

14!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Event Order Logic"
♦  Boolean Event Occurrence Conditions"

8 a Æ b, a Ç b, ¬ a!
♦  Event Ordering Conditions"

8 a b!
–  a and b occur, and a occurs before b!

♦  Interval Operators"
8 a b !

–  a occurs until eventually b will hold in every state!
8 a b!

–  a always holds until eventually b occurs!
8 a b c!

–  in the interval delimited by a and c, b always holds!
♦  Model-theoretic Semantics"

8 Event Order Logic is an LTL!

15

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Event Order Logic"
♦  Representation of Traces"

♦  Representation of Ordering Constraints"

16

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Adopted SEM"
♦  Is  

causal for the violation of ϕ = ☐¬(Tc ÆCc) ?!

♦  AC1"
8 there exists ¾ so that both ¾ ² Ã and ¾ ² ¬ϕ	

♦  Remarks"
8 the "positive" side of counterfactual test!
8 True if there exists a error-path ¾ = Ta, Ca, Gf, Cc, Tc!

17!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Adopted SEM"
♦  Is  

causal for the violation of ϕ = ☐¬(Tc ÆCc) ?!

♦  AC2 (1)"
8 9 ¾' where the order and occurrence of events is different from ¾ and
ϕ is not violated on ¾'!

♦  Remarks"
8 this is the counterfactual test!
8 AC2 (1) fulfilled by!

–  since there exists ¾' = Ta, Ca, Gc, Tc so that !
i ¾' is different from ¾ = Ta, Ca, Gf, Cc, Tc!
i ¾' ² ϕ (¾’ is a “good” path)!

18!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Adopted SEM"
♦  Is  

causal for the violation of ϕ = ☐¬(Tc ÆCc) ?!

♦  AC2 (2)"
8 for a sequence of events to be causal it cannot be possible to add an

event so that causality is voided!

♦  Remarks (1)"
– Motivation!

i serves to reveal that non-occurrence is causal!
–  consider ¾'' = "Ta, Ca, Gf, Cc, Cl, Tc"!

i for ¾'' the property ϕ is not violated since Cl occurs before Tc!
–  consequence: !

i  Ã is not causal (AC2 (2) fails)!
i the non-occurrence of an event (Cl) is causal!

19!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Adopted SEM"
♦  Is  

causal for the violation of ϕ = ☐¬(Tc ÆCc) ?!

♦  Causality of Non-Occurrence (what if AC2(2) fails?)"
8 steps!

–  find minimal set of causal non-occurrence events!
–  add, depending on the position of the event in a® this set!

i  at the beginning of Ã

i  at the end of Ã

i  in the middle of Ã

i  perform test AC2 (2) again!
8 example!

20!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Adopted SEM"
♦  Is  

causal for the violation of ϕ = ☐¬(Tc ÆCc) ?!

♦  AC3 "
8  Ã is minimal: no subset of Ã satisfies conditions AC1 and AC2!

21!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Adopted SEM"
♦  Is  

causal for the violation of ϕ = ☐¬(Tc ÆCc) ?!

♦  OC1 Causality of Event Order"
8 let ª an eol formula over some events in Ã!
8 for some eol formula ª, replace the ordered operator by the

unordered Æ yielding ªÆ!
8 the order expressed by ª is not causal if!

–  !
8 example!

–  order of events Gf, Cc, ¬Cl, Tc is important for causing property
violation!

–  relative order of Ta and Ca is not important, but they need to
precede the above events!

–  resulting formula Ã =

22!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Outline"
♦  Models of Causation"

♦  An Adopted Structural Equation Model"

♦  Causality Checking"

♦  Experimental Evaluation "

♦  Conclusion "

23!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Execution Traces and Counterfactuals"
♦  Traces Define (Alternate) Worlds"

♦  Computed by State Space Search"
8 model checking!

–  traverse state space using BFS or DFS!
8 applicable to reachability properties!

–  no meaningful behavior after property violation is observed!

24!

§B: set of "bad" traces 
 (counterexamples)!

§G: set of "good" traces!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Algorithmics"
♦  Sub-Executions"

8 reduce checks for AC1-AC3 and OC1 to sub-execution tests!
–  ordered and unordered sub-execution operators!

8 proofs in the paper!

♦  Implementation Variants"
8 Off-line Enumeration!

–  enumerate traces !
–  store §B and §G !
–  perform sub-trace computations!

8 On-the-fly!
–  use DFS / BFS on the state space!

i store paths in an adequate data structure as you obtain them!
*  subset graph!

25

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Subset Graph"

26!

•  nodes represent execution traces!
•  levels correspond to trace length!
•  sub- /super-traces on adjoining

levels are connected!
•  color indicates potential causality!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Inference From Subset Graph"
♦  Theorems for Adopted SEM Conditions"

8 eol formula Ã¾ derived from a red node ¾ fulfills AC1 and AC2(1) and
AC3!

–  for BFS: AC3 fulfilled immediately!
–  for DFS: when search terminates!

♦  Construction of Subset Graph"
8 on the fly during state space search!
8 once state space search complete, perform tests for AC2(2) and OC1 !

27

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Complexity (Preliminary)"
♦  Caveat"

8 even for an SEM with only binary variables, computing causal
relationships between variables is NP-complete!

Eiter and Lukasziewicz, 2002!

♦  However"
8 Eiter and Lukasziewicz, 2006: for cycle-free causal dependencies

computing causal relationships can be done polynomially!
8 naturally, this is only part of the complexity analysis…!

28!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Outline"
♦  Models of Causation"

♦  An Adopted Structural Equation Model"

♦  Causality Checking"

♦  Experimental Evaluation "

♦  Conclusion "

29!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Tool Environment"
♦  QuantUM Tool Architecture"

8 prototypical implementation: SpinCause!

30

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Experiments"
♦  Railroad Crossing"

8 Promela model with 133 states and 137 transitions!
8 represented as Dynamic Fault Tree!

31

crash!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Experiments"
♦  Railway Crossing " " " "Airbag System"

"

♦  Observations"
8 BFS outperforms DFS!

–  rely on minimality of length of bad traces found!
i requires less good traces to be stored!

8 on-the-fly outperforms off-line enumeration!
–  on-line: only store red and black traces!
–  off-line: store all traces!

32

Train!

Car!
Gate!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Outline"
♦  Models of Causation"

♦  An Adopted Structural Equation Model"

♦  Causality Checking"

♦  Experimental Evaluation "

♦  Conclusion "

33!

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering

Conclusion"
♦  Causality Checking"

8 technique complementing model checking!
–  aim: algorithmic support for the debugging of models!

8 defined / adopted causality model!
8 proposed implementation!
8 applicability to non-trivial case studies!

♦  Future Work"
8 causality checking at the limits of scalability!

–  dealing with incomplete information!
8 causality checking in a symbolic environment!
8 on-line causality checking for probabilistic models!
8 specific adaptions to functional safety analysis!

– minimal cut sets!
–  root, common and cascading causes!

34

www.se.uni-konstanz.de!Chair for Software Engineering – F. Leitner-Fischer ! so
ftw

ar
e

engineering 35!

?"

